# Consistent Radiometric Calibration of The Landsat MSS Archive

Civil Commercial Imagery Evaluation Workshop

April 1, 2009 Fairfax, VA

Dennis Helder

Rajendra Bhatt

**Image Processing Laboratory** 

South Dakota State University



#### Outline

- Introduction
  - Landsat System Overview
  - Pseudo-Invariant Calibration Sites (PICS)
- MSS Radiometric Calibration
  - □ Cross-Calibration of MSS sensors
    - Landsat-1 to Landsat-2
    - Landsat-2 to Landsat-4
    - Landsat-3 to Landsat-4
    - Landsat-4 to Landsat-5
  - Validation of Cross-calibration results
- Cross-calibration of Landsat-5 MSS to Landsat-5 TM
- Summary
- Acknowledgements:

This work was supported by the NASA Landsat Project Science office and USGS EROS

South Dakota State University

Image Processing Lab

#### Landsat-1 to -7 Characteristics

| Satellite | Launched         | Decommissioned      | Sensors   | Orbit          |  |
|-----------|------------------|---------------------|-----------|----------------|--|
| Landsat-1 | July 23, 1972    | January 6, 1978     | RBV*, MSS | 18 days/900 km |  |
| Landsat-2 | January 22, 1975 | February 25, 1982   | RBV, MSS  | 18 days/900 km |  |
| Landsat-3 | March 5, 1978    | March 31, 1983      | RBV, MSS  | 18 days/900 km |  |
| Landsat-4 | July 16, 1982    | June 15, 2001       | MSS, TM   | 16 days/705 km |  |
| Landsat-5 | March 1, 1984    | Still Alive after   | MSS, TM   | 16 days/705 km |  |
|           |                  | more than 25 years  |           |                |  |
| Landsat-6 | October 5, 1993  | Failure upon launch | ETM       | 16 days/705 km |  |
| Landsat-7 | April 15, 1999   |                     | ETM+      | 16 days/705 km |  |



<sup>\*</sup>The RBV (Return Beam Vidicon) cameras did not achieve the popularity of the MSS sensor

# MSS Properties

- Multispectral Scanner
- Nominal 80m GSI
- 4 Spectral Bands
- Detectors
  - Photomultiplier Tubes—bands1-3
  - Silicon Photodiodes—band 4
- Radiometric calibration based on internal lamp system
- All data in the USGS EROS archive have been radiometrically corrected.



# Spectral bands of MSS

Transmitance Plot (Modtran Brookings Summer)

| Band No. | Spectral Range<br>(µm) |
|----------|------------------------|
| 1        | 0.5 - 0.6              |
| 2        | 0.6 - 0.7              |
| 3        | 0.7 - 0.8              |
| 4        | 0.8 – 1.1              |



- MSS band 3 has water and oxygen absorption bands at 725 nm and 760 nm respectively.
- MSS band 4 includes an H<sub>2</sub>O absorption band at 940 nm.

## Radiometric formulation

- MSS data in the USGS archive is already radiometrically processed based on internal calibration system.
- The calibrated pixels  $(Q_{CAL})$  can be converted to at-sensor radiance  $(L_{\lambda})$  and top-of-atmosphere (TOA) reflectance  $(\rho)$  using the following equations:

$$L_{\lambda} = \left(\frac{\text{LMAX}_{\lambda} - \text{LMIN}_{\lambda}}{Q_{\text{CALMAX}}}\right) Q_{\text{CAL}} + \text{LMIN}_{\lambda} \qquad \rho = \left(\frac{\pi L_{\lambda} d^{2}}{\text{ESUN}_{\lambda} \cdot \text{Cos}\theta}\right)$$

where,

- $\Box$  LMIN<sub> $\lambda$ </sub> and LMAX<sub> $\lambda$ </sub> are known as post-calibration dynamic ranges and their values are given for all five MSS sensors
- $\Box$  d = Earth-sun distance in astronomical units (AU),
- $\supset$  ESUN<sub> $\lambda$ </sub>= mean solar exoatmospheric spectral irradiances, and
- $\Box$   $\theta$  = solar zenith angle for the image portion of interest

# Pseudo-Invariant Calibration Site (PICS)

- Pseudo-invariant calibration sites are temporally and spatially stable natural ground targets that are ideally bright, spatially homogeneous, spectrally flat, and are generally located in arid regions.
- Pseudo-invariant calibration sites can be used to
  - Monitor long term radiometric gain of satellite sensors (e.g. Landsat-5 TM)
  - □ Cross-calibrate multiple satellite sensors that are unable to take image data from the same ground target under simultaneous conditions
- However, the use of this technique requires adequate data collection from invariant sites on a repetitive basis.
- Key pseudo-invariant sites frequently used for Landsat cal-val are: Libya-4 desert (P181R40) and Sonoran desert (P38R38).



#### Sonoran Desert: An invariant site in North America

- Large African pseudo-invariant desert sites are considered to be the optimal sites in the world for sensor calibration.
- Many satellite sensors have a limited archive of data from these sites.
- Sonoran desert (on the Mexican American border) was found to have invariant regions comparable to the Saharan desert.
- The lifetime response of L5 TM to these regions agree with LUT07 calibration model to within 1-2% in the visible and 2-3% in the SWIR.



**Reference:** Daniel L. Morstad, Dennis L. Helder, "Use of pseudo-invariant sites for long-term sensor calibration", IGARSS 2008

## Lifetime Radiometric Calibration Stability and Consistency of Landsat-1 through -5 MSS Sensors



# Methodology

- Good quality and cloud free scenes from Sonoran Desert were searched for all 5 MSS sensors.
- Varieties of scenes used: MSS-X, MSS-P, and MSS-A
- TOA reflectance values were derived for the specified 250\*250 pixel (MSS-X/A) ROI for all scenes.
- A lifetime instrument response was derived by plotting TOA reflectance against time for each sensor.
- Atmospheric and BRDF effects are not accounted for initially.



250\*250 pixels ROI



#### Landsat 1-5 MSS Band 1 (TOA Reflectance vs Time)



- Radiometric calibration of MSS sensors show good stability over lifetime.
- Pre-1979 data from Landsat-3 are not consistent with the post 1979 data.
- Landsat-1 and -4 exhibit the maximum inconsistency (16%) in calculating the TOA reflectance.
- Landsat-2 and -3 have increasing response trend supported by statistical tests.

#### Landsat 1-5 MSS Band 2 (TOA Reflectance vs Time)



- Landsat-2, -3, and -5 mean TOA reflectance agree within 1%.
- Landsat-1 and -4 again exhibit the maximum inconsistency (17%) in calculating the TOA reflectance.
- Slightly increasing response trend of Landsat-2 is supported by statistical tests.

#### Landsat 1-5 MSS Band 3 (TOA Reflectance vs Time)



- Landsat-1, -2, and -5 calibration seems consistent within 1%.
- Landsat-3 and -4 agree in the calculation of TOA reflectance within 2%.
- No trend in any response was supported by statistical tests.



#### Landsat 1-5 MSS Band 4 (TOA Reflectance vs Time)



- Landsat-1 through -4 calibration seems consistent within 6%.
- Variability of data within each sensor is comparatively higher because band
   4 is susceptible to the water vapor content in the atmosphere.
- No clear trend exists in any sensor.



# Summary of Lifetime Stability/Consistency of MSS sensors

- Data from each MSS sensor indicates better than expected radiometric stability.
- Absolute gains of all 5 MSS sensors exhibit a maximum difference of 17%.





## Cross-calibration of L1 MSS to L2 MSS





# Background

- Six pairs of near-coincident scenes from Sonoran desert are selected.
- For better regression, some additional ROIs with different reflectance values were selected.

| Scene Pairs used (6), Total 9 ROIs |                       |  |  |  |  |
|------------------------------------|-----------------------|--|--|--|--|
| LM10410381975150AAA04              | LM20410381975159AAA05 |  |  |  |  |
| LM10410381976073AAA02              | LM20410381976082AAA01 |  |  |  |  |
| LM10410381976109AAA02              | LM20410381976100AAA01 |  |  |  |  |
| LM10410381976109AAA02              | LM20410381976118AAA04 |  |  |  |  |
| LM10410381976289AAA04              | LM20410381976280AAA03 |  |  |  |  |
| LM10410381977262AAA04              | LM20410381977274AAA01 |  |  |  |  |

#### Additional ROIs



## RSR Profiles of Landsat-1 and -2



#### Landsat-1 to -2 Cross-calibration Results











#### Cross-calibration of L2 MSS to L4 MSS





# Background

- The different temporal resolution of Landsat-2 and -4 (18 days vs. 16 days) provided an opportunity to these instruments on November 9, 1982 to acquire *almost simultaneous image data within minutes*.
- Three pairs of scenes selected for this work.

| Pair<br>No. | Scene Identifier      | Date and Time<br>Acquired (YYYY:DOY<br>:HH:MM:SS) | WRS<br>Path | WRS<br>Row | WRS<br>Type | Acquisition<br>Quality | Sun<br>Azimuth<br>(°) | Cloud<br>Cover |
|-------------|-----------------------|---------------------------------------------------|-------------|------------|-------------|------------------------|-----------------------|----------------|
| 1           | LM20340371982313AAA03 | 1982:313:16:56:05                                 | 34          | 37         | 1           | 9                      | 149                   | 10             |
|             | LM40320371982313AAA03 | 1982:313:17:00:04                                 | 32          | 37         | 2           | 9                      | 150                   | 30             |
| 2           | LM20340341982313AAA03 | 1982:313:16:56:00                                 | 34          | 34         | 1           | 9                      | 151                   | 10             |
|             | LM40320341982313AAA03 | 1982:313:16:59:05                                 | 32          | 34         | 2           | 9                      | 152                   | 40             |
| 3           | LM20340351982313AAA03 | 1982:313:16:55:04                                 | 34          | 35         | 1           | 9                      | 151                   | 10             |
|             | LM40320351982313AAA03 | 1982:313:16:59:02                                 | 32          | 35         | 2           | 9                      | 151                   | 20             |

The difference in sun azimuth arises due to a drift in the scene center.

# An Example Scene Pair



LM20340351982313AAA03 1982:313:16:56:00 Sun Elevation = 31° Sun Azimuth = 151°

LM40320351982313AAA03 1982:313:16:59:05 Sun Elevation = 32° Sun Azimuth = 151°



## Region of Interest

- Since none of these acquisitions are from known invariant sites, defining precisely geolocated ROI is a real challenge.
- Geographical features were used to avoid any misregistration error.









#### RSR Profiles of Landsat-2 and -4



## Landsat-2 to -4 Cross-calibration Results





#### Cross-calibration of L3 MSS to L4 MSS





# Background

- The different temporal resolution of Landsat-3 and -4 (18 days vs. 16 days) also provided an opportunity to these instruments to follow *identical paths* on January 20, 1983 within minutes.
- Two pairs of good scenes are selected from this dataset to cross-compare the responses of Landsat-3 and -4.



LM30430361983020AAA03 1983:020:17:47:04



LM40400361983020AAA03 1983:020:17:51:00



LM30170401983012AAA03 1983:012:15:20:00



LM40160401983012AAA03 1983:012:15:24:00

Altogether eight ROIs were defined in the homogeneous areas on the scenes.

## RSR Profiles of Landsat-3 and -4



## Landsat-3 to -4 Cross-calibration Results





## Cross-calibration of L4 MSS to L5 MSS





# Background

- Immediately after launch, the Landsat-5 was initially placed in a tandem orbit close to that of Landsat-4.
- The data acquired during this period was almost simultaneous with a difference of few seconds.
- Two pairs of good scenes were selected from this dataset to cross-compare the responses of Landsat-4 and -5.



LM40200181984075XXX03 1984:075:15:38:04



LM50200181984075AAA03 1984:075:15:38:02



LM40200361984075AAA04 1984:075:15:45:05



LM50200361984075AAA03 1984:075:15:45:03

Initially five precisely geolocated ROIs were defined on the scenes.

## RSR Profiles of Landsat-4 and -5









## Landsat-4 to -5 Cross-calibration Results



#### Validation of Cross-calibration Results



# Methodology

- Sonoran desert site is selected again for validation of crosscal results.
- Following assumptions are made:
  - □ The Sonoran desert site is stable from 1972 to 1992.
  - Any genuine trend observed in the instrument response to this site is the characteristics of the instrument itself.
- Landsat-1 through -4 MSS data from Sonoran desert were transformed to apparent Landsat-5 data using the crosscalibration connections established in the previous part of this presentation.
- Time factor was introduced in the cross-calibration results of Landsat-2 band 1 and 2, and Landsat-3 band 1 to account for the trends they showed in their lifetime responses to Sonora.
- Pre-1979 data from Landsat-3 are left unaltered.

#### Landsat 1-5 MSS Band 1 (TOA Reflectance vs Time)

Before Crosscalibration applied



#### 112

#### TOA Reflectance derived over Sonoran desert as apparently seen by Landsat-5 since 1972, Band 1

◆ Landsat 1 ▲ Landsat 3 Landsat 2 Landsat 4 **XLandsat** 5 0.3  $\mu$  of Means = 0.255  $\mu = 0.257$  $\mu = 0.252$  $\mu = 0.252$  $\mu = 0.258$  $\mu = 0.258$  $\sigma$  of Means = 0.003  $\sigma = 0.004$  $\sigma = 0.004$  $\sigma = 0.004$  $\sigma = 0.003$  $\sigma = 0.004$ 0.28 TOA Reflectance 0.26 0.24 0.22 0.2  $1972\,1973\,1974\,1975\,1976\,1977\,1978\,1979\,1980\,1981\,1982\,1983\,1984\,1985\,1986\,1987\,1988\,1989\,1990\,1991\,1992\,1993$ 

YEAR

After Cross-calibration applied



#### Results: Band 2

Landsat 1-5 MSS Band 2 (TOA Reflectance vs Time)

Before Crosscalibration applied



TOA Reflectance derived over Sonoran desert as apparently seen by Landsat-5 MSS since 1972, Band 2

After Cross-calibration applied





#### Results: Band 3

Landsat 1-5 MSS Band 3 (TOA Reflectance vs Time)

Before Crosscalibration applied



TOA reflectance derived over Sonoran desert as apparently seen by Landsat-5 since 1972, Band 3



YEAR

After Crosscalibration applied



#### Results: Band 4

#### Landsat 1-5 MSS Band 4 (TOA Reflectance vs Time)

Before Crosscalibration applied



TOA reflectance derived over Sonoran desert as apparently seen by Landsat-5 since 1972, Band 4



YEAR

After Cross-calibration applied



# Equivalent Landsat-5 MSS TOA Reflectance Conversion Factors for Landsat-1 through -4 MSS

| Equivalent Landsat-5 TOA Reflectance Conversion Factors |                                               |             |                      |      |           |             |                       |  |
|---------------------------------------------------------|-----------------------------------------------|-------------|----------------------|------|-----------|-------------|-----------------------|--|
| Band                                                    | Landsat-1                                     |             |                      | Band | Landsat-2 |             |                       |  |
|                                                         | Gain                                          | Offset Term | Time Dependent Term  | Бапи | Gain      | Offset Term | Time Dependent Term   |  |
| 1                                                       | 0.9343                                        | 0.0059      | 0                    | 1    | 1.0772    | -0.0079     | 0.0009858*(1982.86-t) |  |
| 2                                                       | 0.8714                                        | 0.0183      | 0                    | 2    | 1.0334    | -0.019      | 0.0010453*(1982.86-t) |  |
| 3                                                       | 0.9386                                        | 0.0114      | 0                    | 3    | 1.0081    | -0.0149     | 0                     |  |
| 4                                                       | 1.0374                                        | 0.0422      | 0                    | 4    | 1.0426    | 0.0131      | 0                     |  |
| Band                                                    | Landsat-3 (Applicable to post-1979 data only) |             |                      | Band | Landsat-4 |             |                       |  |
| Danu                                                    | Gain                                          | Offset Term | Time Dependent Term  | Band | Gain      | Offset Term | Time Dependent Term   |  |
| 1                                                       | 1.0623                                        | -0.0019     | 0.002611*(1983.05-t) | 1    | 1.1284    | 0.0014      | 0                     |  |
| 2                                                       | 0.9875                                        | -0.0032     | 0                    | 2    | 1.079     | -0.0035     | 0                     |  |
| 3                                                       | 1.0461                                        | 0.0039      | 0                    | 3    | 1.0466    | 0.0016      | 0                     |  |
| 4                                                       | 1.0794                                        | 0.0022      | 0                    | 4    | 1.1006    | -0.0031     | 0                     |  |

**Example:** Suppose a TOA reflectance calculation in band 1 over any specified ROI of Landsat-2 scene, LM20410381976118AAA04, is found to be 0.234. The Equivalent Landsat-5 TOA is given by,

$$\rho_{L5} = Gain * \rho_{L2} + Offset + Time dependent term$$
=1.0772\*0.234-0.0079+0.0009858\*(1982.86-1976.32)
=0.251

# Cross-calibration of Landsat-5 MSS to TM



# Background

- Landsat-5 TM is known to have an absolute radiometric accuracy of 5%.
- Absolute calibration of MSS sensors can be achieved by establishing a cross-calibration between Landsat-5 MSS and TM.
- Major issues:
  - Spatial resolution
  - □ RSR Differences

### Key Concern: Dissimilar RSR Profiles



## **Spectrally best matching pairs**

| MSS | TM | FOM   |
|-----|----|-------|
| B1  | B2 | 0.635 |
| B2  | B3 | 0.708 |
| B3  | B4 | 0.182 |
| B4  | B4 | 0.328 |

- None of the four bands match closely in their RSR profiles, indicating that the two sensors may produce different results while looking at the same ground target.
- Effect of Spectral Band Difference is scene specific, and we need to know the spectral signature of target as well to find the Spectral Band Adjustment Factors (SBAFs).

# Region of Interest (ROI)

- Twelve pairs of coincident TM and MSS scenes acquired by Landsat-5 over Libya-4 desert PICS site were selected to cross-calibrate MSS to TM.
- 1000×800 pixels ROI defined on MSS scenes (which is equivalent to 1900×2187 TM pixels).
- The dune features in the site were used to geolocate the ROI.



# Spectral Band Adjustment Factor (SBAF) Calculation





$$SBAF = \frac{\int R_1(\lambda).L(\lambda)d\lambda/\int R_1(\lambda)d\lambda}{\int R_2(\lambda).L(\lambda)d\lambda/\int R_2(\lambda)d\lambda}$$

 Spectral signature of Libya-4 desert was derived using hyperspectral data acquired by Hyperion sensor on Earth Observer-1.

## Results





#### Time series showing cross-cal MSS Band 2 to TM Band 3 ratio



Time series showing cross-cal MSS Band 3 to TM Band 4 ratio



#### Time series showing cross-cal MSS Band 4 to TM Band 4 ratio



# SBAF Examples

(or how do we perform spectrally dependent cross-cal?)

|            | Landsat-5 MSS Band | Band 1    | Band 2 | Band 3 | Band 4 |
|------------|--------------------|-----------|--------|--------|--------|
|            | Landsat-5 TM Band  | Band 2    | Band 3 | Band 4 | Band 4 |
| Vegetation | Conifer            | 1.016     | 0.925  | 1.221  | 1.010  |
|            | Deciduous          | 1.019     | 0.939  | 1.231  | 0.996  |
|            | Dry Grass          | 1.062     | 1.028  | 1.096  | 0.927  |
|            | Green Grass        | 1.082     | 0.919  | 1.261  | 0.979  |
|            | Cheat Grass        | 1.076     | 1.054  | 1.277  | 0.872  |
|            | Maple Leaf         | 1.066     | 0.929  | 1.268  | 1.011  |
|            | Averaç             | je: 1.053 | 0.966  | 1.226  | 0.966  |
|            | Maximu             | m: 1.016  | 0.919  | 1.096  | 0.872  |
|            | Minimu             | m: 1.082  | 1.054  | 1.277  | 1.011  |
|            | Rang               | je: 0.066 | 0.134  | 0.182  | 0.139  |

<sup>\*</sup> Spectral profiles obtained from the ASTER Spectral Library available at http://speclib.jpl.nasa.gov



$$SBAF = \frac{\int R_1(\lambda).L(\lambda)d\lambda/\int R_1(\lambda)d\lambda}{\int R_2(\lambda).L(\lambda)d\lambda/\int R_2(\lambda)d\lambda}$$

### Conclusions

- The radiometric calibration of each MSS sensor was stable within 2% in band 1, 3% in bands 2 and 3, and 6% in band 4, throughout the lifetime.
  - □ The absolute gains of five MSS sensors exhibit a maximum difference of 17% as derived from the currently existing radiometrically processed MSS data in the USGS archive.
  - □ Cross-calibration established (so far) places Landsat-1 through -5 MSS sensors on a consistent radiometric scale to within 6%.
- Initial cross-calibration to Landsat-5 TM using a desert site suggests the absolute radiometric gain of the Landsat-5 MSS is lower in band 1 by 19%, band 2 by 6%, band 3 by 2%, and in band 4 by 3%.
  - □ Cross-cal of MSS and TM has strong spectral dependencies!
- Consistent calibration of the Landsat archive is possible back to 1972!